
j-INT-J-PARALLEL-PROG manuscript No.
(will be inserted by the editor)

dRuby and Rinda

Implementation and application of distributed Ruby

and its parallel coordination mechanism

Masatoshi SEKI1

www.druby.org

Received: date / Revised version: date

Abstract The object-oriented scripting language Ruby is loved by many

programmers for being easy to write in, and for its flexible, dynamic nature.

In the last few years, the Ruby on Rails web application framework, popular

for its productivity benefits, has brought about a renewed attention to Ruby

from the enterprise. As the focus of Ruby has broadened from small tools

and scripts, to large applications, the demands on Ruby’s distributed object

environment have also increased, as has the need for information about

its usage, performances and examples of common practices. An English

translation of the author’s Japanese dRuby book is currently being planned

by the Pragmatic Bookshelf.

dRuby and Rinda were developed by the author as the distributed object

environment and shared tuplespace implementation for the Ruby language,

2 Masatoshi SEKI

and are included as part of Ruby’s standard library. dRuby extends method

calls across the network while retaining the benefits of Ruby. Rinda builds

on dRuby to bring the functionality of Linda, the glue language for dis-

tributed co-ordination systems, to Ruby. This article discusses the design

policy and implementation points of these two systems, and demonstrates

their simplicity with sample code and examples of their usage in actual ap-

plications. In addition to dRuby and Rinda’s appropriateness for sketching

out distributed systems, this article will also demonstrate that dRuby and

Rinda are building a reputation for being suitable as components of the

infrastructure for real-world applications.

1 Introduction

This article aims at giving you details on dRuby and Rinda. dRuby provides

distributed object environment for Ruby. Rinda is a coordination mecha-

nism running on dRuby. First, I would like to introduce Ruby. Ruby is an

object-oriented scripting language created by Yukihiro Matsumoto. Until re-

cently, Ruby’s popularity was limited to a small community of early-adopter

programmers. Ruby is now rapidly gathering attention amongst business

users for its potential productivity gains.

Ruby has the following characteristics;

– Standard object-oriented features, such as classes and methods

– Everything is an object

– Untyped variables

dRuby and Rinda 3

– Easy-to-use libraries

– Simple, easy-to-learn syntax

– Garbage collector

– Rich reflection functionality

– User level thread

Ruby is so-called, categorized as a dynamic object-oriented language.

Everything is composed of objects, and there is no type of variables. Uni-

fication of methods is all made at execution time. Furthermore, Ruby has

rich reflection functionality and allows to use metaprogramming. Ruby is

a mysterious language, as if the creator made tricks on Ruby. We do pro-

gramming as Ruby leads us, and without notice we feel like almost touching

on the essence of object-oriented programming.

dRuby is a distributed object environment for making Ruby running on

it. dRuby extends Rubys method calls across the network and enables to

call object methods from other process/machines. Another is that Rinda

incorporates Lindas implementations within itself; Linda is a glue language

of a distributed coordination system based on dRuby, so it provides common

tuple spaces. This article introduces not only dRubys concept and its design

policy but also its implementations and practical usage. This article will be

discussed as follows.

– the way of dRuby - dRuby’s overview and its design policy

– Implementation dRuby’s implementations

– Performance - Overhead in using dRuby

4 Masatoshi SEKI

– Application - A real system executing dRuby, Rinda’s overview and a

real system executing Rinda

2 the way of dRuby

Blaine Cook, lead developer of Twitter (a micro-blogging service), men-

tioned dRuby in his presentation, ”Scaling Twitter”. 1

– Stupid Easy, Reasonably Fast

– Kinda Flaky, Zero Redundancy, Tightly Coupled.

In this chapter, I describe the design policy and characteristics of dRuby.

2.1 characteristics of dRuby.

dRuby is one of several RMI libraries for Ruby. I did not aim for dRuby to

be just another conventional distributed object system for Ruby. Rather,

I intended to extend Ruby method calls to other processes and other ma-

chines.

As a result, dRuby extends the Ruby interpreter across other processes

and other machines, both in a physical sense and a temporal sense.

dRuby has the following characteristics.

– exclusively for Ruby

– written purely in Ruby

– specifications, such as IDL, not required

1 http://www.slideshare.net/Blaine/scaling-twitter/

dRuby and Rinda 5

POSIX Windows MacOS X

Ruby

dRuby

Application

Fig. 1 dRuby application software structure

From the perspective of a conventional distributed object system, dRuby

also has the following characteristics.

– Easy to set-up

– Easy to learn

– Automatic selection of object transmission strategy (pass by value or

pass by reference)

– reasonably fast

– no distinction between server and client

dRuby is a distributed object system exclusively for Ruby. Only scripts

written in Ruby can be handled by dRuby, however, dRuby can run on any

machine that runs Ruby, irrespective of operating system. That is, even

when running on different platforms, as log as Ruby runs, the platforms will

be able to exchange objects, and also use methods on each others objects.

dRuby is written completely in Ruby, not a special extension written in

C. Thanks to Ruby’s excellent thread, socket and marshalling class libraries,

the initial version of dRuby was implemented in just 200 lines of code.

I believe that this demonstrates the power and elegance of Ruby’s class

6 Masatoshi SEKI

libraries. dRuby is currently included as part of the standard distribution

of Ruby as one of its standard libraries, so it dRuby is available wherever

Ruby is installed.

2.2 Compatibility with Ruby

dRuby pays special attention to maintaining compatibility with Ruby scripts.

dRuby adds a distributed object system to Ruby while preserving as much

of the ”feel” of Ruby as possible. Ruby programmers should find dRuby to

be a comfortable, seamless extension of Ruby. Programmers accustomed to

other conventional distributed object systems, however, may find dRuby to

be a little strange.

Variables in Ruby are not typed, and assignment is not restricted by

inheritance hierarchies. Unlike languages with statically checked variables,

such as Java, objects are not checked for correctness before execution, and

method look-up is only conducted at execution time (when methods are

called). This is an important characteristic of the Ruby language.

dRuby operates in the same fashion. In dRuby, client stubs (the DR-

bObject, also called the ”reference” in dRuby) are similarly not typed, and

method look-up is only conducted at execution time. There is no need for

a listing of exposed methods or inheritance information to be known in

advance. Thus, there is no need to define an interface (e.g. by IDL).

Aside from allowing method calls across a network, dRuby has been

carefully developed to adhere as closely to regular Ruby behaviour as pos-

dRuby and Rinda 7

sible. Consequently, much of Ruby’s unique benefits of Ruby are available

for the programmer to enjoy.

For example, methods called with blocks (originally called iterators) and

exceptions can handled as if they were local. Mutex, queues and other thread

synchronization mechanisms can also be used for inter-process synchroniza-

tion without any special consideration.

2.3 Passing Objects

Concepts that didn’t originally exist in Ruby were introduced in dRuby as

naturally as possible. Object transmission is a good example. When meth-

ods are called, objects such as the method arguments, return values and

exceptions are transmitted. Method arguments are transmitted from client

to server, while exceptions and return values are transmitted from server to

client. In this article, I will refer to both of these types of object transmission

as object exchange.

Assignment (or binding) to variables in Ruby is always by reference.

Clones of objects are never assigned. It is, however, different in dRuby. In

the world of distributed objects, distinguishing between ”pass by value” and

”pass by reference” is an unavoidable fact of life. This is true also of dRuby.

While a computing model where references are continually exchanged

forever (or until they become nil) is conceivable, in reality applications will,

at some point, need ”values”. The mechanism provided by dRuby minimises

the need for programmers to care about the difference between types of

8 Masatoshi SEKI

object exchange, while also striving to be reasonably efficient. In dRuby,

programmers do not need to explicitly specify whether to use pass-by-value

or pass-by-reference. Instead, the system automatically decides which to use.

This decision is made using a simple rule – serializable objects are passed

by value, while unserializable objects are passed by reference.

Although this rule may not always be correct, in most situations it will

work. Here, I would like to briefly discuss this rule. Firstly, note that it is

impossible for objects that cannot be serialized to be passed by value. The

problematic case is where a serializable object that is more appropriately

passed by reference is instead passed by value. To handle this case, dRuby

provides a mechanism whereby serializable objects can be explicitly marked

to be passed by reference. An example will be discussed later in this article.

By automatically choosing the means of object transmission, dRuby

minimizes the amount of code that needs to be written to handle object

transmission.

dRuby’s lack of a need for interface definition (e.g. IDL) and declara-

tion of object transmission style, are not the only ways that dRuby differs

from other distributed object systems. This is because dRuby aims to be a

”Ruby-like distributed object system”, and perhaps also why dRuby may

be perceived as being ”kinda flaky”.

dRuby and Rinda 9

2.4 Unsupported things

Finally, I shall introduce some of the features that dRuby does not sup-

port, namely garbage collection and security. dRuby does not implement

distributed garbage collection because I have not found a solution that is

both cheap and realistic. Currently, it is the responsibility of the applica-

tion to prevent exported objects from being garbage collected. The option

to protect objects from garbage collection using a ping mechanism has been

provided, however, there is a risk that circular references will give rise to

objects that never get garbage collected. Possible solutions to this problem,

including the modification of the Ruby interpreter, are currently being ex-

plored. dRuby currently does not provide any mechanisms for security. At

most, dRuby imposes the same restrictions on method visibility as Ruby

does, but is helpless against malicious attacks. It is, however, possible to

use SSL to secure network communications.

In this chapter, I described dRuby design policy. To summarize, dRuby

does extend Ruby’s method calls as it is, so dRuby is not just a stan-

dard Ruby-like interface of RMI. dRuby would rather co-exist with XML-

RPCSOAPCORBA e.g. In fact, some use http as interface for external net-

work and where dRuby is incorporated in their internal systems at the

backend.

10 Masatoshi SEKI

3 Implementation

In this chapter, I discuss some interesting features of dRuby and its imple-

mentation. Using code from the initial version of dRuby and other sample

code, I will describe in detail how basic RMI is and the mechanism of object

transmission.

3.1 Basic RMI

First, I shall explain the implementation of basic method calling using the

actual code.

3.1.1 An Example: The producer-consumer problem The following code is

a typical implementation the producer-consumer problem using a shared

queue.

shared queue server

require ’thread’

require ’drb/drb’ # (1)

queue = SizedQueue.new(10) # (2)

DRb.start_service(’druby://localhost:9999’, queue) # (3)

sleep # (4)

First, I shall explain the shared queue server. Applications using dRuby must

start by loading ’drb/drb’ (1). Next, a SizedQueue object (3) with a limited

number of buffer elements is instantiated. Then the DRb services is started (3).

dRuby and Rinda 11

Object
foo()

Front

foo()

bar()

Application

Client

Foo

Bar

Object

Fig. 2 front object and typical system

DRb.start service is given the objects to be made public by dRuby, as well as the

URI for the service. In this case, the SizedQueue object is made public at the URI

”druby://localhost:9999”. Any systems created by dRuby always have an object

that indicates the system entrance. The object is called as a front object.

Finally, the service is stopped, without exiting, by calling sleep(4). Even

though the main thread is stopped, the service continues to be available as it

continues to run on threads in the background.

producer

require ’drb/drb’

DRb.start_service #(1)

queue = DRbObject.new_with_uri(’druby://localhost:9999’) #(2)

100.times do |n|

sleep(rand)

queue.push(n) #(3)

end

12 Masatoshi SEKI

consumer

require ’drb/drb’

DRb.start_service

queue = DRbObject.new_with_uri(’druby://localhost:9999’)

100.times do |n|

sleep(rand)

puts queue.pop #(4)

end

The client-like producer and consumer applications also call DRb.start service

(1). A call to DRb.start service without any arguments indicates that the appli-

cation has no front object. Note that applications that never export an object do

not need to call DRb.start service. Next, the reference object for the distributed

queue is instantiated (2). DRbObjects are proxies referencing remote objects. A

DRbObject instantiated with a URI references the object associated with that

URI. Messages are then sent to the remote object (3).

This example can be executed by preparing three terminals, and executing

the scripts in order in separate terminals. No other special set-up is required.

% ruby queue.rb

% ruby consumer.rb

% ruby producer.rb

This simple example demonstrates how Ruby objects can be shared between

processes in just a few lines of code. It is easy to write a distributed system in

dRuby and Rinda 13

dRuby, just as it is easy to write applications in Ruby. Not only is dRuby suitable

for writing distributed systems for prototyping or learning architectures, but such

systems can also be implemented for use in production.

3.1.2 Implementation of RMI The following explains dRuby’s implementa-

tions in RMI by referring from the first version of dRuby2. As the first code does

not describe detail, it is not difficult to find the essence. When a message is sent

to DRbObject - a remote object referring a reference object- the message is trans-

mitted to a remote dRuby server along with a receiver identifier. dRuby searches

an object from the receiver identifier and invokes a method. Let’s have a look at

DRbObject in the first version of dRuby.

class DRbObject

def initialize(obj, uri=nil)

@uri = uri || DRb.uri

@ref = obj.id if obj

end

def method_missing(msg_id, *a)

succ, result = DRbConn.new(@uri).send_message(self, msg_id, *a)

raise result if ! succ

result

end

attr :ref

end

2 http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-list/15406

14 Masatoshi SEKI

In the DRbObject, method missing is just defined. The method missing is

invoked only when receivers receive unmanageable messages. The method missing

of the DRbObject establishes connections with dRuby server where objects are

present. The method sends the receiver ID, the method name and its arguments,

and returns the result. That is to say, a method undefined in the DRbObject is

all transmitted by remote. push and pop in the script shows what I just discussed

here. They are not defined in DRbObject so that method missing is called, and

it transmits messages to an intended dRuby server specified in URI.

class DRbServer

...

def proc

ns = @soc.accept

Thread.start(ns) do |s|

begin

begin

ro, msg, argv = recv_request(s)

if ro and ro.ref

obj = ObjectSpace._id2ref(ro.ref)

else

obj = DRb.front

end

result = obj.__send__(msg.intern, *argv)

succ = true

rescue

result = $!

dRuby and Rinda 15

succ = false

end

send_reply(s, succ, result)

ensure

s.close if s

end

end

end

...

end

pseudo code above describes main process of dRuby server. After accepting

socket, it creates threads and receives an object identifier, messages and argu-

ments. After searching a target objects as per the identifier, send the received

messages. In most of the distributed object systems, proxy is created for each

receiver class, where a list of transferable messages is defined. However, in the

dRuby, the mechanism of method missing and the message search at the execu-

tion time enables one proxy to function as a client stab for all classes. If dRuby

receives message unmanageable by remote receivers (original objects), similar to

Ruby’s standard operations executed to objects, NameError exception is raised.

Another point is that threads are created as per individual message. This helps

enhance dRuby against exceptions by preparing independent execution context.

For instance, avoid blocks of network IO e.g. The best advantage for end-users

is to allow multiple RMI. The reason why the previous program of producer-

consumer problem did not end up in dead lock is just because of the following tips.

While DRbServer process has been blocked due to pop by consumer, producer can

16 Masatoshi SEKI

execute push, which means dRuby allows executing RMI while executing other

RMI. This mechanism enables to execute call back-like processes, iterators or

recursive calls, and synchronize threads among processes.

3.2 Message format

This section describes the message format and the mechanism for object exchange.

dRuby uses TCP/IP for networking and the Marshal class library as its en-

coding mechanism. 3

Marshal is a unique object serialization library, included as part of Ruby’s core

libraries. Starting from the supplied object, Marshal traces references one-by-one

to serialize the entire graph of related objects. dRuby makes heavy usage of the

Marshal library. In some systems, only objects with the ”Serializable” property

are considered to be serializable. In Ruby, however, all objects are initially con-

sidered to be serializable. When Ruby encounters an object whose serialization is

meaningless, or when serialization proves to be impossible (such as File, Thread,

Proc, etc.), an exception will be raised.

The request forwarded to remote object is composed of the following set of

information. Each component is an object serialized by Marshal.

– receiver identifier

– message string

– arguments

Let’s have a look at the implementations of the first version The latest version

also sends length, but it does not have any difference in essence.

3 The network and the message format can be customized.

dRuby and Rinda 17

def dump(obj, soc)

begin

str = Marshal::dump(obj) # (1)

rescue

ro = DRbObject.new(obj) # (2)

str = Marshal::dump(ro) # (3)

end

soc.write(str) if soc

return str

end

This short snippet of code is one of the distinguishing parts of dRuby’s im-

plementation. First, the object passed as an argument is serialized using Mar-

shal.dump(1). In the case that an exception is raised, the reference to the object

(i.e. the DRbObject created (2) with the object) is serialized using Marshal.dump.

(3) When Marshal.dump fails, this means that the target object was unserializ-

able, or an unserializable object was referenced by the target object. In this case,

dRuby does not allow the RMI to fail. Unserializable objects, or objects that

cannot be passed as values, are instead passed as references to the object. This

behavior is one of the tricks that dRuby uses to minimize the gap between dRuby

and vanilla Ruby.

Let’s see it in action. In this example, we will prepare a shared dictionary. One

service registers services in the dictionary, while another service uses the services

in the dictionary.

18 Masatoshi SEKI

We’ll deal with the dictionary service first. In distributed systems parlance,

we might refer to it as the name server. Since we’re just making a Hash public,

it’s very short.

dict.rb

require ’drb/drb’

DRb.start_service(’druby://localhost:23456’, Hash.new)

sleep

Next is a log service. This is a simple service that records a time and a string.

The SimpleLogger class defines the main logic. Running logger.rb will register a

SimpleLogger object and a description to the dictionary service, and then sleep.

Since the SimpleLogger references a File object (in this script, standard error

output), it cannot be serialized with Marshal.dump. Consequently, it cannot be

passed by value, and is passed by reference instead.

logger.rb

require ’drb/drb’

require ’monitor’

DRb.start_service

dict = DRbObject.new_with_uri(’druby://localhost:23456’)

class SimpleLogger

include MonitorMixin

def initialize(stream=$stderr)

dRuby and Rinda 19

super()

@stream = stream

end

def log(str)

s = "#{Time.now}: #{str}"

synchronize do

@stream.puts(s)

end

end

end

logger = SimpleLogger.new

dict[’logger’] = logger

dict[’logger info’] = "SimpleLogger is here."

sleep

Finally, I will explain the service user. The script app.rb creates a reference to

the dictionary service and retrieves the logger service using the logger’s description

string. After inspecting each object with the p method, the info object is simple

the string object ”SimpleLogger is here.”, while the logger object is revealed to

be a DRbObject.

app.rb

require ’drb/drb’

DRb.start_service

20 Masatoshi SEKI

dict = DRbObject.new_with_uri(’druby://localhost:23456’)

info = dict[’logger info’]

logger = dict[’logger’]

p info #=> "SimpleLogger is here."

p logger #=> #<DRb::DRbObject:0x....>

logger.log("Hello, World.")

logger.log("Hello, Again.")

logger.log() is an RMI that generates log output. We should be able to check

the output in the terminal running logger.rb.

In this chapter, I described two distinguishing features of dRuby’s implemen-

tation with usable examples: the method call implementation, and the imple-

mentation of the mechanism for selecting the method of object transmission and

message format. Extracts from the first version of dRuby were used in the expla-

nations, but the reader should be aware that the essence of the implementation

remains unchanged in the current version. The first version of dRuby is the most

suitable for reviewing the implementation.

4 Performance

In this chapter, I discuss results from testing dRuby’s RMI performance.

The data produced by the following experiment indicates the maximum possi-

ble number of RMI between processes on the same machine. The results from this

experiment should be considered to be for a best-case scenario, and not results for

dRuby and Rinda 21

typical usage. The results should give a good reference for the degree of overhead

in dRuby.

require ’drb/drb’

class Test

def count(n)

n.times do |x|

yield(x)

end

end

end

DRb.start_service(’druby://yourhost:32100’, Test.new)

sleep

require ’drb/drb’

DRb.start_service(nil, nil)

ro = DRbObject.new_with_uri(’druby://yourhost:32100’)

ro.count(10000) {|x| x}

I measured the time taken for 10,000 remote method invocations in two dif-

ferent environments. The first case is measures transmission between guest OS

running on a virtual machine on a host OS, and the host OS on the same machine

(Pentium4 3.0GHz). This combination is Ruby on Windows XP, and Ruby on a

coLinux instance running as a guest OS within the Windows XP host OS.

% time ruby count.rb

22 Masatoshi SEKI

real 0m11.250s

user 0m0.810s

sys 0m0.260s

For the following set of results, RMI is not used. Instead, regular method calls

within the same process were tested.

% time ruby count.rb

real 0m0.044s

user 0m0.040s

sys 0m0.010s

The next two sets of results are from executing the tests on an iMac G5. The

first set of results are with separate processes on the same OS, while the second

set of results used regular method calls within a single process.

real 0m13.858s

user 0m6.517s

sys 0m1.032s

real 0m0.079s

user 0m0.031s

sys 0m0.012s

Between 700 - 900 remote method invocations per second were achieved.

Whether this is sufficient for your application is for you to decide. Note that

regular method calls within the same process (without RMI) were approximately

200 times faster. The frequency of RMI is likely to have a significant impact on

application performance, and is an important point to consider when building real

applications.

dRuby and Rinda 23

5 Applications

There are a few applications that made implementations by using dRuby. As is

well known, in the Ruby on Rails debugger is implemented and in asynchronous

process of Web applications where dRuby are often implemented. In this chapter,

I introduce a few applications which made implementations by using dRuby. On

top of that, I also discuss a distributed coordination system based on dRuby,

Rinda and a practical example.

5.1 Backend service of large scale Web application

Here, I introduce Hatena screenshot service as an example of a backend use in

large scale Web applications. Hatena screenshot service is a service reported by

Tateno in Ruby Kaigi 2006. The screenshot service is to display thumbnails e.g.

of registered URL screenshots to other Hatena service like blogs. Web front end

is configured on Linux, but screenshot is implemented based on Windows IE

components, because taking the screenshot under Window’s environment achieves

better performance at high speed. The screenshot is executed as asynchronous

batch process from a front-end. Processes running on Windows receive objects of

both a URL from processes on Linux via dRuby and a return method, and execute

the screenshot.

According to data as of 2006 that RubyKaigi present, the handling scale in

this system was likely 120SS/min, 170,000SS/day by parallelism with 2 machines.

24 Masatoshi SEKI

5.2 On-Memory Database, or Persistent Process

Next, I shall introduce the usage of dRuby as persistent memory, or as a persistent

process. Many problems in web applications relate to the need for both processes

that deal with short-lived request-response cycles, and semantic processes.

One concrete example is CGI. CGI programs are invoked upon receiving a

single request, and finish after returning a response. From the point of view of

the user on their web browser, however, the application appears to have a much

longer life-cycle. In order to make a series of small request-response cycles feel like

a single long-lived application, each CGI instance must leave a ”will” to the next

generation before it dies.

The management of these ”wills” (session management) is one of the major

pain points in web application programming. Many factors need to be taken into

account – the serialization of state, handling mutual exclusion in files or relational

databases, and dealing with conflicts arising from multiple, simultaneous requests.

One approach is to minimise, or even eliminate, the ”will” left for the next

process by combining the short-lived front-end with a long-lived, persistent appli-

cation.

RWiki is an interesting WikiWikiWeb implementation that applies such an

architecture.

Meta-data such as the source of the Wiki page, the cache of the HTML output,

links and update time stamps, are all maintained in memory on a long-lived server

process. The short-lived CGI processes access this server via dRuby to retrieve

wiki pages requested by the user. One private RWiki server hosts approximately

20,000 pages in memory. In order to be able to rebuild the site after a reboot,

dRuby and Rinda 25

the server constantly logs sufficient data on disk. These logs, however, are never

referenced during normal execution.

The following example is an extremely small CGI script (4 steps), along with a

simple ”counter” server. Let’s quickly review the mechanism of CGI. CGI process

retrieves a HTTP request from a CGI environment (typically a web server) via

standard input (stdin) and environment variables, and then returns a response

through standard output (stdout).

This CGI script invokes the comparatively long-lived counter server and passes

it the environment variables and references to the standard output and input.

By replacing the counter example with another example, a CGI application that

doesn’t use the ”will” model can easily be written.

#!/usr/local/bin/ruby

require ’drb/’drb’

DRb.start_service(’druby://localhost:0’)

ro = DRbObject.new_with_uri(’druby://localhost:12321’)

ro.start(ENV.to_hash, $stdin, $stdout)

require ’webrick/cgi’

require ’drb/drb’

require ’thread’

class SimpleCountCGI < WEBrick::CGI

def initialize

super

26 Masatoshi SEKI

@count = Queue.new

@count.push(1)

end

def count

value = @count.pop

ensure

@count.push(value + 1)

end

def do_GET(req, res)

res[’content-type’] = ’text/plain’

res.body = count.to_s

end

end

DRb.start_service(’druby://localhost:12321’, SimpleCountCGI.new)

sleep

6 Rinda and Linda

Finally, I introduce Linda’s implementations based on dRuby, Rinda and its prac-

tical use case. Linda is a concept of a glue language in the distributed coordination

system. A simple model of tuples and tuple spaces enables to coordinate multiple

tasks. That is to say, it is very attracting model that can manage various situa-

tions caused due to a parallel programming, even though it is a simple. Because

dRuby and Rinda 27

of this reason behind, many languages incorporate the tuple spaces of its own.

C-Linda, JavaSpace and Rinda are typical examples of the implementation seen

from the following.

C-Linda enhances a base languageCand adds Linda’s operations, so these are

achieved by executing preprocessors. Regarding the implementations of JavaS-

pace, the tuple space is implemented by using Java. The implementations of

Ruby’s tuple space are achieved in Rinda. That is, Rinda implemented Linda’s

tuple and tuple space model in Ruby.

In the case of C-Linda, operable tuple spaces are implicitly limited to one

tuple space, so that the tuple space does not have to be specified. In another case

of Rinda, as tuple space and objects are communicated by message, applications

have to decide which tuple spaces will use.

In the case of Rinda, in the Linda’s basic operations, out, in, inp, rd, rdp

except for eval are available, but that can be substituted for Ruby’ threads.

Latest version of Rinda changed the basic operation method names to that

like JavaSpace.

write Add tuples to tuple space. (out)

take Delete matching tuples from the tuple space, and return the deleted tuples.

If a matching tuples do not exist, block them. (in)

read Return copy of matching tuples. If matching tuples do not exist, block them.

(rd)

Take and read is used to set timeout. If the timeout sets to zero, they behave

similar to inp, rdp. Apart from these basic operations, read all is also available

to read all tuples matching to patterns. The read all appears to be useful for a

debug use.

28 Masatoshi SEKI

The tuple and patterns are expressed by Array of Ruby. Regulations of match-

ing tuple patterns are expanded to Ruby-like regulations, so that not only wild

card(Wild card in Rinda means nil.) but also classes, further more Range and

Regexp can be specified. Rinda can be handled like a sort of query language.

Furthermore, time limit can set in the tuples, though this function is still under

experiment. Also, numbers indicating seconds and time line update objects (It is

called renewer in Rinda.) can be specified in the time limit. Whether to renew the

time line or not is enquired to the objects. Rinda can also give dRuby’s reference

as renewer.. For instance, a tuple creator is closed abnormally. After some time,

tuples to turn to out of time limit can be provided.

6.1 Dining philosophers

In terms of Rinda, I explain to you with actual code.

require ’rinda/tuplespace’ # (1)

class Phil

def initialize(ts, num, size) # (2)

@ts = ts

@left = num

@right = (@left + 1) % size

@status = ’ ’

end

attr_reader :status

def think

dRuby and Rinda 29

@status = ’T’

sleep(rand)

@status = ’_’

end

def eat

@status = ’E’

sleep(rand)

@status = ’.’

end

def main_loop # (3)

while true

think

@ts.take([:room_ticket])

@ts.take([:chopstick, @left])

@ts.take([:chopstick, @right])

eat

@ts.write([:chopstick, @left])

@ts.write([:chopstick, @right])

@ts.write([:room_ticket])

end

end

end

30 Masatoshi SEKI

ts = Rinda::TupleSpace.new # (4)

size = 10

phil = []

size.times do |n|

phil[n] = Phil.new(ts, n, size)

Thread.start(n) do |x| # (5)

phil[x].main_loop

end

ts.write([:chopstick, n])

end

(size - 1).times do

ts.write([:room_ticket])

end

while true # (6)

sleep 0.3

puts phil.collect {|x| x.status}.join(" ")

end

A well- known dining philosophers is introduced here. This program uses two

types of tuples. One is chopstick, and another is room ticket. Chopstick has a

tuple with two elements. The first element is symbol :chopstick, and the second

element is an integer indicating the chopstick’s number. room ticket is a ticket

that limits the number of philosophers to let in the room. The element contains

just a symble :room ticket.

dRuby and Rinda 31

Phil class indicates a philosopher. The Phil object is generated along with

tuple spaces, numbers, and number of tables. The object has instance variables

indicating status(2). These variables are required to monitor philosopher’s status.

Compared to C-Linda, Rinda has to pass target tuple spaces. main loop method in

the Phil class is an infinite loop indicating philosopher’s actions(3). After executing

think(), the main loop gets room ticket for dining, and get a left chopstick and

following right chopstick. Once all items are ready, execute eat(). When the dining

finishes, return the left and right chopsticks and the room ticket to the tuple space,

and again return to think().

In the main program, firstly create tuple spaces (3), and create philosophers,

and then invoke the main loop method by subthread(5). These operations are

similar to eval() operation in C-Linda. Chopsticks corresponding to number of

people and room ticket of 1 lower number are written to the tuple spaces.

The last infinite loop is a group to monitor philosophers every 0.3 seconds(6).

The loop indicates their actions whether they are thinking, dining, or holding

chopsticks e.g. at that moment.

6.2 Tuple and Pattern

Here, I explain tuples and patterns and pattern matching in Rinda. As I men-

tioned before, those tuples and the patterns are expressed in Array. There are

characteristics in elements. For the elements, all Ruby objects including dRuby’s

reference can be specified.

[:chopstick, 2]

[:room_ticket]

[’abc’, 2, 5]

32 Masatoshi SEKI

[:matrix, 1.6, 3.14]

[’family’, ’is-sister’, ’Carolyn’, ’Elinor’]

Similarly for patterns, all Ruby’s objects are available as elements. In terms

of pattern matching, its regulations are a little strange. nil is interpreted as wild

card which can match any objects and each element is compared by ===case

equals.

Ruby has a case expression and the case expression is a branch just like c

switch. ===case equals is special equality comparisons. === is basically similar

to ==, however, in a certain class, it behaves like patterns. For example, Regexp

is nothing but a pattern matching of strings, and Range identifies whether values

are within the limited range or not. When a Class is specified as pattern elements,

it has come to be justified by kind of(), so that patterns with class-specified can

be described we all.

The followings are given sample examples of the patterns.

[/^A/, nil, nil] (1)

[:matrix, Numeric, Numeric] (2)

[’family’, ’is-sister’, ’Carolyn’, nil] (3)

[nil, ’age’, (0..18)] (4)

1. A tuple made of three elements, and the first element starts with ”A”-string

2. A tuple arranged by that the first element is symbol ”matrix” and the second

and the third element are a numeric class.

3. Tuple of Carolyn sister

4. Tuple aged from 0 to 18

Let’s check that patterns are matching by using common TupleSpace server

and interactive environment irb.

dRuby and Rinda 33

require ’rinda/tuplespace’

ts = Rinda::TupleSpace.new

DRb.start_service(’druby://localhost:12121’, ts)

sleep

This 4 lines are the script of common TupleSpace.

% irb --simple-prompt -r rinda/rinda

>> DRb.start_service

>> ro = DRbObject.new_with_uri(’druby://localhost:12121’)

>> ts = Rinda::TupleSpaceProxy.new(ro)

>> ts.write([’seki’, ’age’, 20])

>> ts.write([’sougo’, ’age’, 18])

>> ts.write([’leonard’, ’age’, 18])

>> ts.read_all([nil, ’age’, 0..19])

=> [["sougo", "age", 18], ["leonard", "age", 18]]

>> ts.read_all([/^s/, ’age’, nil])

=> [["seki", "age", 20], ["sougo", "age", 18]]

>> exit

You can see that Ruby-like flexible patterns are available. You might also

consider that tuple spaces can be used as a simple data base. In this point, you

have to be careful in dealing with a large number of tuples, according to the nature

of API with the pattern-flexible, Rinda conducts a liner search.

6.3 Unfair optimization

Latest Rinda has already implemented unfair optimization in order to perform

searchings at a high speed by using general applications. Only when the first

34 Masatoshi SEKI

element is a symbol, store tuples to an own collection. As per my experience, the

following type of tuples is often used by application side.

[:screenshot, 12345, "http://www.druby.org"]

[:result_screenshot, 12345, true]

[:prime, 10]

That is to say, it is tuples composed of a type of message and some arguments.

In the case of take or read, the following patterns is applicable.

[:screenshot, nil, String]

[:result_screenshot, 12345, nil]

[:prime, Numeric]

This is nothing but a pattern which takes any one from a certain message

type tuples. Considering this situation, you can probably expect high performance

by storing the first element as a key into own collection and focusing on search

targets. On the other hand, there is another problem whether or not any objects

can be used as a key to achieve a high performance. In the case of Rinda’s pattern,

the use of===case match comes to unsuitable for String and Integer as a key.

However, Symbol is still appropriate as a key because ===case match of Symbol

has a Symbol class and its values only. Furthermore, Symbol is as easy to read as

String.

Let’s summarize the unfair optimization here. In the latest Rinda, when the

first element in the tuple is a Symbol, Rinda executes the unfair optimization, and

performance on take/read is improved. Similarly for take/read, when a pattern

search is that the first element is a Symbol, the searching performance comes

faster than usual.

dRuby and Rinda 35

6.4 Application of Rinda

Here, I introduce a practical use of Rinda. Buzztter is a Web service interpreting

Twitter sentences. The Twitter is SNS specialized on a short sentence. Buzztter

collects posted sentences into Twitter, and interpret the sentences, and figure out

words more often used than usual. By doing so, Buzztter understands overall

trends of words of that moment in the Twitter.

Buzztter composes of several subsystems, in which a distributed crawler sub-

system; a subsystem collects sentences by using Twitter API(HTTP); uses Rinda.

The crawler subsystem is made of multiple fetchers that is to fetch information

from Twitter and importers that is to make it persistent.Rinda and dRuby is a

mediator between the fetchers and the importers. For your reference, the following

is the data to be handled by Buzztter (as of Nov 3, 2007)

– 125000 case per day

– 72MB per day

6.5 Rinda Update

Lastly, I discuss Rinda’s latest trends. Last year, in RubyKaigi 2007, persistent

TupleSpace release was announced. Information of Rinda::TupleSpace disappears

once processes finish. The persistent TupleSpace recovers a straight tuple space at

the time of invoking processes again. During the execution, in order to be ready for

re-invocation, the persistent TupleSpace keeps logging. At the time of invoking

again, referring log information, the TupleSpace rebuilds the processes. While

executing, the TupleSpace just keep logging, but it does mean to read contents in

the storage.

36 Masatoshi SEKI

7 Conclusion

I discussed dRuby’s design policy and the implementations along with its concept,

and introduced the practical usage. In addition to that, I discussed implementa-

tions of TupleSpace developed based on dRuby and Rinda. Both dRuby and Rinda

are designed as a simple system in order for Ruby programmers to feel comfort-

able to know more of it. Hence, this is most appropriate to sketch the distributed

system. However, practical examples discussed in this article are not for a toy dis-

cussion for sketching purpose. Those examples well demonstrated that dRuby and

Rinda are practically available as infrastructure to build practical applications.

Acknowledgements

I’d like to thank Hisashi Morita, Leonard Chin, Mayumi Morinag, Sougo Tsuboi

and Takashi Egawa for translating and reviewing.

References

1. Hatena::screenshot. http://screenshot.hatena.ne.jp/.

2. Kent Beck. Smalltalk: best practice patterns. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1997.

3. Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM,

32(4):444–458, 1989.

4. Nicholas Carriero and David Gelernter. How to write parallel programs: a

guide to the perplexed. pages 52–86, 1995.

5. David Gelernter. Generative communication in linda. ACM Trans. Program.

Lang. Syst., 7(1):80–112, 1985.

dRuby and Rinda 37

6. Bo Leuf and Ward Cunningham. The Wiki way: quick collaboration on the

Web. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

7. Scott Oaks and Henry Wong. Jini in a nutshell: a desktop quick reference.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.

8. Masatoshi Seki. Distributed and Web Programming with dRuby. Ohm-sha,

2005.

9. Masatoshi SEKI. druby again. http://www.druby.org/dRubyAgain.pdf, 2007.

Presentation at RubyKaigi 2006, Tokyo Japan.

10. Masatoshi SEKI. Rinda: Answering the rubyconf, rubykaigi.

http://www.druby.org/RK07.pdf, 2007. Presentation at RubyKaigi 2007,

Tokyo Japan.

11. Robert J. Sheehan. Teaching operating systems with ruby. In ITiCSE ’07:

Proceedings of the 12th annual SIGCSE conference on Innovation and technol-

ogy in computer science education, pages 38–42, New York, NY, USA, 2007.

ACM.

12. Youji Shidara. Inside buztter. http://www.slideshare.net/dara/buzztter, 11

2007.

13. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Princi-

ples and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 2006.

14. David Thomas and Andrew Hunt. Programming Ruby: the pragmatic pro-

grammer’s guide. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2000.

