
j-INT-J-PARALLEL-PROG manuscript No.
(will be inserted by the editor)

dRuby and Rinda

Implementation and application of distributed Ruby

and its parallel coordination mechanism

Masatoshi SEKI1

www.druby.org

Received: date / Revised version: date

Abstract The object-oriented scripting language Ruby is loved by many
programmers for being easy to write in, and for its flexible, dynamic nature.
In the last few years, the Ruby on Rails web application framework, popular
for its productivity benefits, has brought about a renewed attention to Ruby
from the enterprise. As the focus of Ruby has broadened from small tools
and scripts, to large applications, the demands on Ruby’s distributed object
environment have also increased, as has the need for information about
its usage, performances and examples of common practices. An English
translation of the author’s Japanese dRuby book is currently being planned
by the Pragmatic Bookshelf.

dRuby and Rinda were developed by the author as the distributed object
environment and shared tuplespace implementation for the Ruby language,
and are included as part of Ruby’s standard library. dRuby extends method
calls across the network while retaining the benefits of Ruby. Rinda builds
on dRuby to bring the functionality of Linda, the glue language for dis-
tributed co-ordination systems, to Ruby. This article discusses the design
policy and implementation points of these two systems, and demonstrates
their simplicity with sample code and examples of their usage in actual ap-
plications. In addition to dRuby and Rinda’s appropriateness for sketching
out distributed systems, this article will also demonstrate that dRuby and
Rinda are building a reputation for being suitable as components of the
infrastructure for real-world applications.

1 Introduction

This article aims at giving you details on dRuby and Rinda. dRuby provides
distributed object environment for Ruby. Rinda is a coordination mecha-
nism running on dRuby. First, I would like to introduce Ruby. Ruby is an

2 Masatoshi SEKI

object-oriented scripting language created by Yukihiro Matsumoto. Until re-
cently, Ruby’s popularity was limited to a small community of early-adopter
programmers. Ruby is now rapidly gathering attention amongst business
users for its potential productivity gains.

Ruby has the following characteristics;

– Standard object-oriented features, such as classes and methods
– Everything is an object
– Untyped variables
– Easy-to-use libraries
– Simple, easy-to-learn syntax
– Garbage collector
– Rich reflection functionality
– User level thread

Ruby is so-called, categorized as a dynamic object-oriented language.
Everything is composed of objects, and there is no type of variables. Uni-
fication of methods is all made at execution time. Furthermore, Ruby has
rich reflection functionality and allows to use metaprogramming. Ruby is
a mysterious language, as if the creator made tricks on Ruby. We do pro-
gramming as Ruby leads us, and without notice we feel like almost touching
on the essence of object-oriented programming.

dRuby is a distributed object environment for making Ruby running on
it. dRuby extends Rubys method calls across the network and enables to
call object methods from other process/machines. Another is that Rinda
incorporates Lindas implementations within itself; Linda is a glue language
of a distributed coordination system based on dRuby, so it provides common
tuple spaces. This article introduces not only dRubys concept and its design
policy but also its implementations and practical usage. This article will be
discussed as follows.

– the way of dRuby - dRuby’s overview and its design policy
– Implementation dRuby’s implementations
– Performance - Overhead in using dRuby
– Application - A real system executing dRuby, Rinda’s overview and a

real system executing Rinda

2 the way of dRuby

Blaine Cook, lead developer of Twitter (a micro-blogging service), men-
tioned dRuby in his presentation, ”Scaling Twitter”. 1

– Stupid Easy, Reasonably Fast
– Kinda Flaky, Zero Redundancy, Tightly Coupled.

In this chapter, I describe the design policy and characteristics of dRuby.

1 http://www.slideshare.net/Blaine/scaling-twitter/

dRuby and Rinda 3

POSIX Windows MacOS X

Ruby

dRuby

Application

Fig. 1 dRuby application software structure

2.1 characteristics of dRuby.

dRuby is one of several RMI libraries for Ruby. I did not aim for dRuby to
be just another conventional distributed object system for Ruby. Rather,
I intended to extend Ruby method calls to other processes and other ma-
chines.

As a result, dRuby extends the Ruby interpreter across other processes
and other machines, both in a physical sense and a temporal sense.

dRuby has the following characteristics.

– exclusively for Ruby
– written purely in Ruby
– specifications, such as IDL, not required

From the perspective of a conventional distributed object system, dRuby
also has the following characteristics.

– Easy to set-up
– Easy to learn
– Automatic selection of object transmission strategy (pass by value or

pass by reference)
– reasonably fast
– no distinction between server and client

dRuby is a distributed object system exclusively for Ruby. Only scripts
written in Ruby can be handled by dRuby, however, dRuby can run on any
machine that runs Ruby, irrespective of operating system. That is, even
when running on different platforms, as log as Ruby runs, the platforms will
be able to exchange objects, and also use methods on each others objects.

dRuby is written completely in Ruby, not a special extension written in
C. Thanks to Ruby’s excellent thread, socket and marshalling class libraries,
the initial version of dRuby was implemented in just 200 lines of code.
I believe that this demonstrates the power and elegance of Ruby’s class
libraries. dRuby is currently included as part of the standard distribution
of Ruby as one of its standard libraries, so it dRuby is available wherever
Ruby is installed.

4 Masatoshi SEKI

2.2 Compatibility with Ruby

dRuby pays special attention to maintaining compatibility with Ruby scripts.
dRuby adds a distributed object system to Ruby while preserving as much
of the ”feel” of Ruby as possible. Ruby programmers should find dRuby to
be a comfortable, seamless extension of Ruby. Programmers accustomed to
other conventional distributed object systems, however, may find dRuby to
be a little strange.

Variables in Ruby are not typed, and assignment is not restricted by
inheritance hierarchies. Unlike languages with statically checked variables,
such as Java, objects are not checked for correctness before execution, and
method look-up is only conducted at execution time (when methods are
called). This is an important characteristic of the Ruby language.

dRuby operates in the same fashion. In dRuby, client stubs (the DR-
bObject, also called the ”reference” in dRuby) are similarly not typed, and
method look-up is only conducted at execution time. There is no need for
a listing of exposed methods or inheritance information to be known in
advance. Thus, there is no need to define an interface (e.g. by IDL).

Aside from allowing method calls across a network, dRuby has been
carefully developed to adhere as closely to regular Ruby behaviour as pos-
sible. Consequently, much of Ruby’s unique benefits of Ruby are available
for the programmer to enjoy.

For example, methods called with blocks (originally called iterators) and
exceptions can handled as if they were local. Mutex, queues and other thread
synchronization mechanisms can also be used for inter-process synchroniza-
tion without any special consideration.

2.3 Passing Objects

Concepts that didn’t originally exist in Ruby were introduced in dRuby as
naturally as possible. Object transmission is a good example. When meth-
ods are called, objects such as the method arguments, return values and
exceptions are transmitted. Method arguments are transmitted from client
to server, while exceptions and return values are transmitted from server to
client. In this article, I will refer to both of these types of object transmission
as object exchange.

Assignment (or binding) to variables in Ruby is always by reference.
Clones of objects are never assigned. It is, however, different in dRuby. In
the world of distributed objects, distinguishing between ”pass by value” and
”pass by reference” is an unavoidable fact of life. This is true also of dRuby.

While a computing model where references are continually exchanged
forever (or until they become nil) is conceivable, in reality applications will,
at some point, need ”values”. The mechanism provided by dRuby minimises
the need for programmers to care about the difference between types of
object exchange, while also striving to be reasonably efficient. In dRuby,

dRuby and Rinda 5

programmers do not need to explicitly specify whether to use pass-by-value
or pass-by-reference. Instead, the system automatically decides which to use.
This decision is made using a simple rule – serializable objects are passed
by value, while unserializable objects are passed by reference.

Although this rule may not always be correct, in most situations it will
work. Here, I would like to briefly discuss this rule. Firstly, note that it is
impossible for objects that cannot be serialized to be passed by value. The
problematic case is where a serializable object that is more appropriately
passed by reference is instead passed by value. To handle this case, dRuby
provides a mechanism whereby serializable objects can be explicitly marked
to be passed by reference. An example will be discussed later in this article.

By automatically choosing the means of object transmission, dRuby
minimizes the amount of code that needs to be written to handle object
transmission.

dRuby’s lack of a need for interface definition (e.g. IDL) and declara-
tion of object transmission style, are not the only ways that dRuby differs
from other distributed object systems. This is because dRuby aims to be a
”Ruby-like distributed object system”, and perhaps also why dRuby may
be perceived as being ”kinda flaky”.

2.4 Unsupported things

Finally, I shall introduce some of the features that dRuby does not sup-
port, namely garbage collection and security. dRuby does not implement
distributed garbage collection because I have not found a solution that is
both cheap and realistic. Currently, it is the responsibility of the applica-
tion to prevent exported objects from being garbage collected. The option
to protect objects from garbage collection using a ping mechanism has been
provided, however, there is a risk that circular references will give rise to
objects that never get garbage collected. Possible solutions to this problem,
including the modification of the Ruby interpreter, are currently being ex-
plored. dRuby currently does not provide any mechanisms for security. At
most, dRuby imposes the same restrictions on method visibility as Ruby
does, but is helpless against malicious attacks. It is, however, possible to
use SSL to secure network communications.

In this chapter, I described dRuby design policy. To summarize, dRuby
does extend Ruby’s method calls as it is, so dRuby is not just a stan-
dard Ruby-like interface of RMI. dRuby would rather co-exist with XML-
RPCSOAPCORBA e.g. In fact, some use http as interface for external net-
work and where dRuby is incorporated in their internal systems at the
backend.

3 Implementation

In this chapter, I discuss some interesting features of dRuby and its imple-
mentation. Using code from the initial version of dRuby and other sample

6 Masatoshi SEKI

Object
foo()

Front

foo()

bar()

Application

Client

Foo

Bar

Object

Fig. 2 front object and typical system

code, I will describe in detail how basic RMI is and the mechanism of object
transmission.

3.1 Basic RMI

First, I shall explain the implementation of basic method calling using the
actual code.

3.1.1 An Example: The producer-consumer problem The following code is
a typical implementation the producer-consumer problem using a shared
queue.

shared queue server

require ’thread’

require ’drb/drb’ # (1)

queue = SizedQueue.new(10) # (2)

DRb.start_service(’druby://localhost:9999’, queue) # (3)

sleep # (4)

First, I shall explain the shared queue server. Applications using dRuby must
start by loading ’drb/drb’ (1). Next, a SizedQueue object (3) with a limited
number of buffer elements is instantiated. Then the DRb services is started (3).
DRb.start service is given the objects to be made public by dRuby, as well as the
URI for the service. In this case, the SizedQueue object is made public at the URI
”druby://localhost:9999”. Any systems created by dRuby always have an object
that indicates the system entrance. The object is called as a front object.

Finally, the service is stopped, without exiting, by calling sleep(4). Even
though the main thread is stopped, the service continues to be available as it
continues to run on threads in the background.

producer

require ’drb/drb’

DRb.start_service #(1)

dRuby and Rinda 7

queue = DRbObject.new_with_uri(’druby://localhost:9999’) #(2)

100.times do |n|

sleep(rand)

queue.push(n) #(3)

end

consumer

require ’drb/drb’

DRb.start_service

queue = DRbObject.new_with_uri(’druby://localhost:9999’)

100.times do |n|

sleep(rand)

puts queue.pop #(4)

end

The client-like producer and consumer applications also call DRb.start service
(1). A call to DRb.start service without any arguments indicates that the appli-
cation has no front object. Note that applications that never export an object do
not need to call DRb.start service. Next, the reference object for the distributed
queue is instantiated (2). DRbObjects are proxies referencing remote objects. A
DRbObject instantiated with a URI references the object associated with that
URI. Messages are then sent to the remote object (3).

This example can be executed by preparing three terminals, and executing
the scripts in order in separate terminals. No other special set-up is required.

% ruby queue.rb

% ruby consumer.rb

% ruby producer.rb

This simple example demonstrates how Ruby objects can be shared between
processes in just a few lines of code. It is easy to write a distributed system in
dRuby, just as it is easy to write applications in Ruby. Not only is dRuby suitable
for writing distributed systems for prototyping or learning architectures, but such
systems can also be implemented for use in production.

3.1.2 Implementation of RMI The following explains dRuby’s implementa-
tions in RMI by referring from the first version of dRuby2. As the first code does
not describe detail, it is not difficult to find the essence. When a message is sent
to DRbObject - a remote object referring a reference object- the message is trans-
mitted to a remote dRuby server along with a receiver identifier. dRuby searches
an object from the receiver identifier and invokes a method. Let’s have a look at
DRbObject in the first version of dRuby.

class DRbObject

def initialize(obj, uri=nil)

2 http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-list/15406

8 Masatoshi SEKI

@uri = uri || DRb.uri

@ref = obj.id if obj

end

def method_missing(msg_id, *a)

succ, result = DRbConn.new(@uri).send_message(self, msg_id, *a)

raise result if ! succ

result

end

attr :ref

end

In the DRbObject, method missing is just defined. The method missing is
invoked only when receivers receive unmanageable messages. The method missing
of the DRbObject establishes connections with dRuby server where objects are
present. The method sends the receiver ID, the method name and its arguments,
and returns the result. That is to say, a method undefined in the DRbObject is
all transmitted by remote. push and pop in the script shows what I just discussed
here. They are not defined in DRbObject so that method missing is called, and
it transmits messages to an intended dRuby server specified in URI.

class DRbServer

...

def proc

ns = @soc.accept

Thread.start(ns) do |s|

begin

begin

ro, msg, argv = recv_request(s)

if ro and ro.ref

obj = ObjectSpace._id2ref(ro.ref)

else

obj = DRb.front

end

result = obj.__send__(msg.intern, *argv)

succ = true

rescue

result = $!

succ = false

end

send_reply(s, succ, result)

ensure

s.close if s

end

end

end

...

end

pseudo code above describes main process of dRuby server. After accepting
socket, it creates threads and receives an object identifier, messages and argu-

dRuby and Rinda 9

ments. After searching a target objects as per the identifier, send the received
messages. In most of the distributed object systems, proxy is created for each
receiver class, where a list of transferable messages is defined. However, in the
dRuby, the mechanism of method missing and the message search at the execu-
tion time enables one proxy to function as a client stab for all classes. If dRuby
receives message unmanageable by remote receivers (original objects), similar to
Ruby’s standard operations executed to objects, NameError exception is raised.

Another point is that threads are created as per individual message. This helps
enhance dRuby against exceptions by preparing independent execution context.
For instance, avoid blocks of network IO e.g. The best advantage for end-users
is to allow multiple RMI. The reason why the previous program of producer-
consumer problem did not end up in dead lock is just because of the following tips.
While DRbServer process has been blocked due to pop by consumer, producer can
execute push, which means dRuby allows executing RMI while executing other
RMI. This mechanism enables to execute call back-like processes, iterators or
recursive calls, and synchronize threads among processes.

3.2 Message format

This section describes the message format and the mechanism for object exchange.
dRuby uses TCP/IP for networking and the Marshal class library as its en-

coding mechanism. 3

Marshal is a unique object serialization library, included as part of Ruby’s core
libraries. Starting from the supplied object, Marshal traces references one-by-one
to serialize the entire graph of related objects. dRuby makes heavy usage of the
Marshal library. In some systems, only objects with the ”Serializable” property
are considered to be serializable. In Ruby, however, all objects are initially con-
sidered to be serializable. When Ruby encounters an object whose serialization is
meaningless, or when serialization proves to be impossible (such as File, Thread,
Proc, etc.), an exception will be raised.

The request forwarded to remote object is composed of the following set of
information. Each component is an object serialized by Marshal.

– receiver identifier
– message string
– arguments

Let’s have a look at the implementations of the first version The latest version
also sends length, but it does not have any difference in essence.

def dump(obj, soc)

begin

str = Marshal::dump(obj) # (1)

rescue

ro = DRbObject.new(obj) # (2)

str = Marshal::dump(ro) # (3)

end

soc.write(str) if soc

return str

end

3 The network and the message format can be customized.

10 Masatoshi SEKI

This short snippet of code is one of the distinguishing parts of dRuby’s im-
plementation. First, the object passed as an argument is serialized using Mar-
shal.dump(1). In the case that an exception is raised, the reference to the object
(i.e. the DRbObject created (2) with the object) is serialized using Marshal.dump.
(3) When Marshal.dump fails, this means that the target object was unserializ-
able, or an unserializable object was referenced by the target object. In this case,
dRuby does not allow the RMI to fail. Unserializable objects, or objects that
cannot be passed as values, are instead passed as references to the object. This
behavior is one of the tricks that dRuby uses to minimize the gap between dRuby
and vanilla Ruby.

Let’s see it in action. In this example, we will prepare a shared dictionary. One
service registers services in the dictionary, while another service uses the services
in the dictionary.

We’ll deal with the dictionary service first. In distributed systems parlance,
we might refer to it as the name server. Since we’re just making a Hash public,
it’s very short.

dict.rb

require ’drb/drb’

DRb.start_service(’druby://localhost:23456’, Hash.new)

sleep

Next is a log service. This is a simple service that records a time and a string.
The SimpleLogger class defines the main logic. Running logger.rb will register a
SimpleLogger object and a description to the dictionary service, and then sleep.
Since the SimpleLogger references a File object (in this script, standard error
output), it cannot be serialized with Marshal.dump. Consequently, it cannot be
passed by value, and is passed by reference instead.

logger.rb

require ’drb/drb’

require ’monitor’

DRb.start_service

dict = DRbObject.new_with_uri(’druby://localhost:23456’)

class SimpleLogger

include MonitorMixin

def initialize(stream=$stderr)

super()

@stream = stream

end

def log(str)

s = "#{Time.now}: #{str}"

synchronize do

@stream.puts(s)

end

end

dRuby and Rinda 11

end

logger = SimpleLogger.new

dict[’logger’] = logger

dict[’logger info’] = "SimpleLogger is here."

sleep

Finally, I will explain the service user. The script app.rb creates a reference to
the dictionary service and retrieves the logger service using the logger’s description
string. After inspecting each object with the p method, the info object is simple
the string object ”SimpleLogger is here.”, while the logger object is revealed to
be a DRbObject.

app.rb

require ’drb/drb’

DRb.start_service

dict = DRbObject.new_with_uri(’druby://localhost:23456’)

info = dict[’logger info’]

logger = dict[’logger’]

p info #=> "SimpleLogger is here."

p logger #=> #<DRb::DRbObject:0x....>

logger.log("Hello, World.")

logger.log("Hello, Again.")

logger.log() is an RMI that generates log output. We should be able to check
the output in the terminal running logger.rb.

In this chapter, I described two distinguishing features of dRuby’s implemen-
tation with usable examples: the method call implementation, and the imple-
mentation of the mechanism for selecting the method of object transmission and
message format. Extracts from the first version of dRuby were used in the expla-
nations, but the reader should be aware that the essence of the implementation
remains unchanged in the current version. The first version of dRuby is the most
suitable for reviewing the implementation.

4 Performance

In this chapter, I discuss results from testing dRuby’s RMI performance.
The data produced by the following experiment indicates the maximum possi-

ble number of RMI between processes on the same machine. The results from this
experiment should be considered to be for a best-case scenario, and not results for
typical usage. The results should give a good reference for the degree of overhead
in dRuby.

require ’drb/drb’

class Test

12 Masatoshi SEKI

def count(n)

n.times do |x|

yield(x)

end

end

end

DRb.start_service(’druby://yourhost:32100’, Test.new)

sleep

require ’drb/drb’

DRb.start_service(nil, nil)

ro = DRbObject.new_with_uri(’druby://yourhost:32100’)

ro.count(10000) {|x| x}

I measured the time taken for 10,000 remote method invocations in two dif-
ferent environments. The first case is measures transmission between guest OS
running on a virtual machine on a host OS, and the host OS on the same machine
(Pentium4 3.0GHz). This combination is Ruby on Windows XP, and Ruby on a
coLinux instance running as a guest OS within the Windows XP host OS.

% time ruby count.rb

real 0m11.250s

user 0m0.810s

sys 0m0.260s

For the following set of results, RMI is not used. Instead, regular method calls
within the same process were tested.

% time ruby count.rb

real 0m0.044s

user 0m0.040s

sys 0m0.010s

The next two sets of results are from executing the tests on an iMac G5. The
first set of results are with separate processes on the same OS, while the second
set of results used regular method calls within a single process.

real 0m13.858s

user 0m6.517s

sys 0m1.032s

real 0m0.079s

user 0m0.031s

sys 0m0.012s

Between 700 - 900 remote method invocations per second were achieved.
Whether this is sufficient for your application is for you to decide. Note that
regular method calls within the same process (without RMI) were approximately
200 times faster. The frequency of RMI is likely to have a significant impact on
application performance, and is an important point to consider when building real
applications.

dRuby and Rinda 13

5 Applications

There are a few applications that made implementations by using dRuby. As is
well known, in the Ruby on Rails debugger is implemented and in asynchronous
process of Web applications where dRuby are often implemented. In this chapter,
I introduce a few applications which made implementations by using dRuby. On
top of that, I also discuss a distributed coordination system based on dRuby,
Rinda and a practical example.

5.1 Backend service of large scale Web application

Here, I introduce Hatena screenshot service as an example of a backend use in
large scale Web applications. Hatena screenshot service is a service reported by
Tateno in Ruby Kaigi 2006. The screenshot service is to display thumbnails e.g.
of registered URL screenshots to other Hatena service like blogs. Web front end
is configured on Linux, but screenshot is implemented based on Windows IE
components, because taking the screenshot under Window’s environment achieves
better performance at high speed. The screenshot is executed as asynchronous
batch process from a front-end. Processes running on Windows receive objects of
both a URL from processes on Linux via dRuby and a return method, and execute
the screenshot.

According to data as of 2006 that RubyKaigi present, the handling scale in
this system was likely 120SS/min, 170,000SS/day by parallelism with 2 machines.

5.2 On-Memory Database, or Persistent Process

Next, I shall introduce the usage of dRuby as persistent memory, or as a persistent
process. Many problems in web applications relate to the need for both processes
that deal with short-lived request-response cycles, and semantic processes.

One concrete example is CGI. CGI programs are invoked upon receiving a
single request, and finish after returning a response. From the point of view of
the user on their web browser, however, the application appears to have a much
longer life-cycle. In order to make a series of small request-response cycles feel like
a single long-lived application, each CGI instance must leave a ”will” to the next
generation before it dies.

The management of these ”wills” (session management) is one of the major
pain points in web application programming. Many factors need to be taken into
account – the serialization of state, handling mutual exclusion in files or relational
databases, and dealing with conflicts arising from multiple, simultaneous requests.

One approach is to minimise, or even eliminate, the ”will” left for the next
process by combining the short-lived front-end with a long-lived, persistent appli-
cation.

RWiki is an interesting WikiWikiWeb implementation that applies such an
architecture.

Meta-data such as the source of the Wiki page, the cache of the HTML output,
links and update time stamps, are all maintained in memory on a long-lived server
process. The short-lived CGI processes access this server via dRuby to retrieve
wiki pages requested by the user. One private RWiki server hosts approximately

14 Masatoshi SEKI

20,000 pages in memory. In order to be able to rebuild the site after a reboot,
the server constantly logs sufficient data on disk. These logs, however, are never
referenced during normal execution.

The following example is an extremely small CGI script (4 steps), along with a
simple ”counter” server. Let’s quickly review the mechanism of CGI. CGI process
retrieves a HTTP request from a CGI environment (typically a web server) via
standard input (stdin) and environment variables, and then returns a response
through standard output (stdout).

This CGI script invokes the comparatively long-lived counter server and passes
it the environment variables and references to the standard output and input.
By replacing the counter example with another example, a CGI application that
doesn’t use the ”will” model can easily be written.

#!/usr/local/bin/ruby

require ’drb/’drb’

DRb.start_service(’druby://localhost:0’)

ro = DRbObject.new_with_uri(’druby://localhost:12321’)

ro.start(ENV.to_hash, $stdin, $stdout)

require ’webrick/cgi’

require ’drb/drb’

require ’thread’

class SimpleCountCGI < WEBrick::CGI

def initialize

super

@count = Queue.new

@count.push(1)

end

def count

value = @count.pop

ensure

@count.push(value + 1)

end

def do_GET(req, res)

res[’content-type’] = ’text/plain’

res.body = count.to_s

end

end

DRb.start_service(’druby://localhost:12321’, SimpleCountCGI.new)

sleep

6 Rinda and Linda

Finally, I introduce Linda’s implementations based on dRuby, Rinda and its prac-
tical use case. Linda is a concept of a glue language in the distributed coordination

dRuby and Rinda 15

system. A simple model of tuples and tuple spaces enables to coordinate multiple
tasks. That is to say, it is very attracting model that can manage various situa-
tions caused due to a parallel programming, even though it is a simple. Because
of this reason behind, many languages incorporate the tuple spaces of its own.
C-Linda, JavaSpace and Rinda are typical examples of the implementation seen
from the following.

C-Linda enhances a base languageCand adds Linda’s operations, so these are
achieved by executing preprocessors. Regarding the implementations of JavaS-
pace, the tuple space is implemented by using Java. The implementations of
Ruby’s tuple space are achieved in Rinda. That is, Rinda implemented Linda’s
tuple and tuple space model in Ruby.

In the case of C-Linda, operable tuple spaces are implicitly limited to one
tuple space, so that the tuple space does not have to be specified. In another case
of Rinda, as tuple space and objects are communicated by message, applications
have to decide which tuple spaces will use.

In the case of Rinda, in the Linda’s basic operations, out, in, inp, rd, rdp
except for eval are available, but that can be substituted for Ruby’ threads.

Latest version of Rinda changed the basic operation method names to that
like JavaSpace.

write Add tuples to tuple space. (out)
take Delete matching tuples from the tuple space, and return the deleted tuples.

If a matching tuples do not exist, block them. (in)
read Return copy of matching tuples. If matching tuples do not exist, block them.

(rd)

Take and read is used to set timeout. If the timeout sets to zero, they behave
similar to inp, rdp. Apart from these basic operations, read all is also available
to read all tuples matching to patterns. The read all appears to be useful for a
debug use.

The tuple and patterns are expressed by Array of Ruby. Regulations of match-
ing tuple patterns are expanded to Ruby-like regulations, so that not only wild
card(Wild card in Rinda means nil.) but also classes, further more Range and
Regexp can be specified. Rinda can be handled like a sort of query language.

Furthermore, time limit can set in the tuples, though this function is still under
experiment. Also, numbers indicating seconds and time line update objects (It is
called renewer in Rinda.) can be specified in the time limit. Whether to renew the
time line or not is enquired to the objects. Rinda can also give dRuby’s reference
as renewer.. For instance, a tuple creator is closed abnormally. After some time,
tuples to turn to out of time limit can be provided.

6.1 Dining philosophers

In terms of Rinda, I explain to you with actual code.

require ’rinda/tuplespace’ # (1)

class Phil

def initialize(ts, num, size) # (2)

@ts = ts

16 Masatoshi SEKI

@left = num

@right = (@left + 1) % size

@status = ’ ’

end

attr_reader :status

def think

@status = ’T’

sleep(rand)

@status = ’_’

end

def eat

@status = ’E’

sleep(rand)

@status = ’.’

end

def main_loop # (3)

while true

think

@ts.take([:room_ticket])

@ts.take([:chopstick, @left])

@ts.take([:chopstick, @right])

eat

@ts.write([:chopstick, @left])

@ts.write([:chopstick, @right])

@ts.write([:room_ticket])

end

end

end

ts = Rinda::TupleSpace.new # (4)

size = 10

phil = []

size.times do |n|

phil[n] = Phil.new(ts, n, size)

Thread.start(n) do |x| # (5)

phil[x].main_loop

end

ts.write([:chopstick, n])

end

(size - 1).times do

ts.write([:room_ticket])

end

while true # (6)

sleep 0.3

puts phil.collect {|x| x.status}.join(" ")

dRuby and Rinda 17

end

A well- known dining philosophers is introduced here. This program uses two
types of tuples. One is chopstick, and another is room ticket. Chopstick has a
tuple with two elements. The first element is symbol :chopstick, and the second
element is an integer indicating the chopstick’s number. room ticket is a ticket
that limits the number of philosophers to let in the room. The element contains
just a symble :room ticket.

Phil class indicates a philosopher. The Phil object is generated along with
tuple spaces, numbers, and number of tables. The object has instance variables
indicating status(2). These variables are required to monitor philosopher’s status.
Compared to C-Linda, Rinda has to pass target tuple spaces. main loop method in
the Phil class is an infinite loop indicating philosopher’s actions(3). After executing
think(), the main loop gets room ticket for dining, and get a left chopstick and
following right chopstick. Once all items are ready, execute eat(). When the dining
finishes, return the left and right chopsticks and the room ticket to the tuple space,
and again return to think().

In the main program, firstly create tuple spaces (3), and create philosophers,
and then invoke the main loop method by subthread(5). These operations are
similar to eval() operation in C-Linda. Chopsticks corresponding to number of
people and room ticket of 1 lower number are written to the tuple spaces.

The last infinite loop is a group to monitor philosophers every 0.3 seconds(6).
The loop indicates their actions whether they are thinking, dining, or holding
chopsticks e.g. at that moment.

6.2 Tuple and Pattern

Here, I explain tuples and patterns and pattern matching in Rinda. As I men-
tioned before, those tuples and the patterns are expressed in Array. There are
characteristics in elements. For the elements, all Ruby objects including dRuby’s
reference can be specified.

[:chopstick, 2]

[:room_ticket]

[’abc’, 2, 5]

[:matrix, 1.6, 3.14]

[’family’, ’is-sister’, ’Carolyn’, ’Elinor’]

Similarly for patterns, all Ruby’s objects are available as elements. In terms
of pattern matching, its regulations are a little strange. nil is interpreted as wild
card which can match any objects and each element is compared by ===case
equals.

Ruby has a case expression and the case expression is a branch just like c
switch. ===case equals is special equality comparisons. === is basically similar
to ==, however, in a certain class, it behaves like patterns. For example, Regexp
is nothing but a pattern matching of strings, and Range identifies whether values
are within the limited range or not. When a Class is specified as pattern elements,
it has come to be justified by kind of(), so that patterns with class-specified can
be described we all.

The followings are given sample examples of the patterns.

18 Masatoshi SEKI

[/^A/, nil, nil] (1)

[:matrix, Numeric, Numeric] (2)

[’family’, ’is-sister’, ’Carolyn’, nil] (3)

[nil, ’age’, (0..18)] (4)

1. A tuple made of three elements, and the first element starts with ”A”-string
2. A tuple arranged by that the first element is symbol ”matrix” and the second

and the third element are a numeric class.
3. Tuple of Carolyn sister
4. Tuple aged from 0 to 18

Let’s check that patterns are matching by using common TupleSpace server
and interactive environment irb.

require ’rinda/tuplespace’

ts = Rinda::TupleSpace.new

DRb.start_service(’druby://localhost:12121’, ts)

sleep

This 4 lines are the script of common TupleSpace.

% irb --simple-prompt -r rinda/rinda

>> DRb.start_service

>> ro = DRbObject.new_with_uri(’druby://localhost:12121’)

>> ts = Rinda::TupleSpaceProxy.new(ro)

>> ts.write([’seki’, ’age’, 20])

>> ts.write([’sougo’, ’age’, 18])

>> ts.write([’leonard’, ’age’, 18])

>> ts.read_all([nil, ’age’, 0..19])

=> [["sougo", "age", 18], ["leonard", "age", 18]]

>> ts.read_all([/^s/, ’age’, nil])

=> [["seki", "age", 20], ["sougo", "age", 18]]

>> exit

You can see that Ruby-like flexible patterns are available. You might also
consider that tuple spaces can be used as a simple data base. In this point, you
have to be careful in dealing with a large number of tuples, according to the nature
of API with the pattern-flexible, Rinda conducts a liner search.

6.3 Unfair optimization

Latest Rinda has already implemented unfair optimization in order to perform
searchings at a high speed by using general applications. Only when the first
element is a symbol, store tuples to an own collection. As per my experience, the
following type of tuples is often used by application side.

[:screenshot, 12345, "http://www.druby.org"]

[:result_screenshot, 12345, true]

[:prime, 10]

That is to say, it is tuples composed of a type of message and some arguments.
In the case of take or read, the following patterns is applicable.

dRuby and Rinda 19

[:screenshot, nil, String]

[:result_screenshot, 12345, nil]

[:prime, Numeric]

This is nothing but a pattern which takes any one from a certain message
type tuples. Considering this situation, you can probably expect high performance
by storing the first element as a key into own collection and focusing on search
targets. On the other hand, there is another problem whether or not any objects
can be used as a key to achieve a high performance. In the case of Rinda’s pattern,
the use of===case match comes to unsuitable for String and Integer as a key.
However, Symbol is still appropriate as a key because ===case match of Symbol
has a Symbol class and its values only. Furthermore, Symbol is as easy to read as
String.

Let’s summarize the unfair optimization here. In the latest Rinda, when the
first element in the tuple is a Symbol, Rinda executes the unfair optimization, and
performance on take/read is improved. Similarly for take/read, when a pattern
search is that the first element is a Symbol, the searching performance comes
faster than usual.

6.4 Application of Rinda

Here, I introduce a practical use of Rinda. Buzztter is a Web service interpreting
Twitter sentences. The Twitter is SNS specialized on a short sentence. Buzztter
collects posted sentences into Twitter, and interpret the sentences, and figure out
words more often used than usual. By doing so, Buzztter understands overall
trends of words of that moment in the Twitter.

Buzztter composes of several subsystems, in which a distributed crawler sub-
system; a subsystem collects sentences by using Twitter API(HTTP); uses Rinda.
The crawler subsystem is made of multiple fetchers that is to fetch information
from Twitter and importers that is to make it persistent.Rinda and dRuby is a
mediator between the fetchers and the importers. For your reference, the following
is the data to be handled by Buzztter (as of Nov 3, 2007)

– 125000 case per day

– 72MB per day

6.5 Rinda Update

Lastly, I discuss Rinda’s latest trends. Last year, in RubyKaigi 2007, persistent
TupleSpace release was announced. Information of Rinda::TupleSpace disappears
once processes finish. The persistent TupleSpace recovers a straight tuple space at
the time of invoking processes again. During the execution, in order to be ready for
re-invocation, the persistent TupleSpace keeps logging. At the time of invoking
again, referring log information, the TupleSpace rebuilds the processes. While
executing, the TupleSpace just keep logging, but it does mean to read contents in
the storage.

20 Masatoshi SEKI

7 Conclusion

I discussed dRuby’s design policy and the implementations along with its concept,
and introduced the practical usage. In addition to that, I discussed implementa-
tions of TupleSpace developed based on dRuby and Rinda. Both dRuby and Rinda
are designed as a simple system in order for Ruby programmers to feel comfort-
able to know more of it. Hence, this is most appropriate to sketch the distributed
system. However, practical examples discussed in this article are not for a toy dis-
cussion for sketching purpose. Those examples well demonstrated that dRuby and
Rinda are practically available as infrastructure to build practical applications.

Acknowledgements

I’d like to thank Hisashi Morita, Leonard Chin, Mayumi Morinag, Sougo Tsuboi
and Takashi Egawa for translating and reviewing.

References

1. Hatena::screenshot. http://screenshot.hatena.ne.jp/.
2. Kent Beck. Smalltalk: best practice patterns. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1997.
3. Nicholas Carriero and David Gelernter. Linda in context. Commun. ACM,

32(4):444–458, 1989.
4. Nicholas Carriero and David Gelernter. How to write parallel programs: a

guide to the perplexed. pages 52–86, 1995.
5. David Gelernter. Generative communication in linda. ACM Trans. Program.

Lang. Syst., 7(1):80–112, 1985.
6. Bo Leuf and Ward Cunningham. The Wiki way: quick collaboration on the

Web. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
7. Scott Oaks and Henry Wong. Jini in a nutshell: a desktop quick reference.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.
8. Masatoshi Seki. Distributed and Web Programming with dRuby. Ohm-sha,

2005.
9. Masatoshi SEKI. druby again. http://www.druby.org/dRubyAgain.pdf, 2007.

Presentation at RubyKaigi 2006, Tokyo Japan.
10. Masatoshi SEKI. Rinda: Answering the rubyconf, rubykaigi.

http://www.druby.org/RK07.pdf, 2007. Presentation at RubyKaigi 2007,
Tokyo Japan.

11. Robert J. Sheehan. Teaching operating systems with ruby. In ITiCSE ’07:
Proceedings of the 12th annual SIGCSE conference on Innovation and technol-
ogy in computer science education, pages 38–42, New York, NY, USA, 2007.
ACM.

12. Youji Shidara. Inside buztter. http://www.slideshare.net/dara/buzztter, 11
2007.

13. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Princi-
ples and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 2006.

14. David Thomas and Andrew Hunt. Programming Ruby: the pragmatic pro-
grammer’s guide. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

